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Absfrucf- Over the laqt decade, network practitioners have focused 
on monitoring, measuring, and characterizing traffic in the network to 
gain insight into building critical network components (from the protocol 
stack to routers and switches to network interface cards). Recent research 
shows that additional insight can be obtained by monitoring traffic at the 
application level (Le,, before application-sent traffic is modulated by the 
protocol stack) rather than in the network (i-e., after it is modulated by 
the protocol stack). 

Consequently, this paper describes a Monitor for Application- 
Generated Network Traffic (MAGNeT) that captures traffic generated by 
the application rather than traffic in the network. MAGNeT consists of 
application programs as well as modifications to the standard Linux ker- 
nel. Together, these tools provide the capability of monitoring an appli- 
cation’s network behavior and protocol state information in production 
systems. The use of MAGNeT will enable the research community to con- 
struct a library of real traces of application-generated traffic from which 
researchers can more realistically test network protocol designs and the- 
ory. MAGNeT can also be used to verify the correct operation of protocol 
enhancements and to troubleshoot and tune protocol implementations. 

I. MOTIVATION 
Although monitoring [ 1-61 and characterizing [7-101 traf- 

fic in the network provides insight into building critical net- 
work components (e.g., ideal buffer sizes in routers), recent re- 
search [ 1 1-13] shows that additional insight can be obtained by 
monitoring and measuring traffic at the application level $e., 
before it is modulated by the protocol stack) rather than in the 
network (i.e., after it is modulated by the protocol stack). For 
example, knowing application traffic patterns can provide in- 
sight into the design of a better protocol stack. 

A.  Background 
Network researchers often use traffic libraries such as t c  - 

p l i b  [ 141, network traces such as those at [ 15,161, or network 
models such as those found in [9] to drive their network experi- 
ments, particularly to test the performance of network-protocol 
enhancements. However, such libraries, traces, and models 
are based on measurements made by tcpdump [l] (or simi- 
lar tools like PingER [2], NLANR Network Analysis Infras- 
tructure [4], NIMI [51, CoralReef [6]), meaning that the traf- 
fic an application sends on the network is captured only after 
having passed through TCP (or more generally, any protocol 
stack) and into the network. That is, the tools capture traffic on 
the wire (or in the network) rather than at the application level. 
Thus, the above tools cannot provide any protocol-independent 
insight into the actual traffic patterns of an application. 

This work was supported by the U.S. Dept. of Energy’s Laboratory-Directed 
Research & Developmenl Program and the Los Alamos Computer Science 
Institute through Los Alamos National Laboratory contract W-7405-BNG-36. 
Any opinions, findings, and conclusions, or recommendations expressed in this 
material are those of the author(s) and do not necessarily reflect the views of 
DOE, Los Alamos National Laboratory, or the Los Alamos Computer Science 
Institute. 
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Fig. 1. Monitoring Points of Various Tools 

So, researchers have not been testing the performance of net- 
work protocols using reaE, application-generated traffic traces; 
rather, they have used once-modulated (by the protocol stack) 
traffic traces as input, which are subsequently modulated a 
second time during the testing of the protocol. If the dif- 
ferences between application-generated traces and network- 
captured traces are negligible, such a simplification is accept- 
able. However, as we will show in this paper, the differences 
in the traces are substantial, indicating that the protocol stack 
adversely modulates the application-generated traffic patterns. 
This observation may invalidate the empirical results gathered 
from the performance evaluation of network protocols over the 
last decade because many researchers used network-captured 
traces rather than application-generated traces to drive their ex- 
periments. 

What network researchers need are traces of real, 
application-generated traffic. Therefore, this paper describes 
a Monitor for Application-Generated Network Traffic (MAG- 
NeT) that captures traffic generated by the application rather 
than in the network. 

B. Related Work 
As shown in Fig. 1, MAGNeT differs from tcpdurnp-like 

measurement tools in that it can monitor traffic at the appli- 
cation level, (i-e., before it traverses the protocol stack), and 
throughout the entire protocol stack, as well as traffic entering 
and leaving the network. The only other measurement tool that 
makes similar measurements is the TCP kernel monitor from 
Pittsburgh Supercomputing Center [ 171. 

MAGNeT differs from the TCP kernel monitor in at least 
three ways. First, MAGNeT, although described in this paper 
as only a monitor for application-generated traffic (Le., the in- 
terface between the application layer and TCP layer), can be 
used anywhere in the protocol stack. Second, MAGNeT mon- 
itors a superset of the data that the TCP kernel monitor does. 
Third, MAGNeT is implemented on the Linux operating sys- 
tem whereas PSC’s TCP kernel monitor works on NetBSD. 



11. SOF~TWARE ARCHITECTURE 

Developing MAGNeT presents two design challenges. First 
is the issue of accurate time measurement. MAGNeT uses 
the CPU cycle counter available in modern microprocessors 
to record timestamps with cycle-level granularity. This func- 
tionality relies on code in the architecture-specific Linux code 
base but should be present on most Linux platforms. 

The second, and more difficult, challenge requires that 
MAGNeT run on machines in a production environment in or- 
der to obtain realistic application-traffic traces. Hence, MAG- 
NeT must incur minirnal overhead so that the end user is not 
impacted and so that the application-generated traffic stream is 
not adversely perturbed. This latter consideration requires that 
any processing or filtering of the captured data be performed 
off-line; reducing or filtering the data in real-time not only 
adds an intolerable performance overhead but also adversely 
perturbs the application-generated traffic stream. 

We address these design issues in our MAGNeT software 
distribution', which consists of several user-application pro- 
grams as well as modifications to the Linux kernel. The pri- 
mary functionality of MAGNeT is contained in a patch to 
the Linux kernel. The patch creates a circular buffer in ker- 
nel memory and places calls throughout the networking stack 
to record appropriate information as data traverses the stack. 
A user-space program periodically empties this kernel buffer, 
saving the binary data to the disk. For post-processing the 
data, a set of data-analysis tools translates the binary data 
into machine- and human-readable form. Finally, a library of 
scripts to enable automated data collection from a set of hosts 
completes the MAGNeT package. 

Fig. 2 illustrates the operation and dataflow of MAGNeT at 
a high level. Unmodified applications (that run on the test sys- 
tem) periodically make send ( ) and recv ( ) system calls to 
send and receive network traffic. These calls eventually make 
use of TCP, IP, or other network protocols in the kernel to trans- 
fer data on the network. For systems running MAGNeT, each 
time a send ( ) , recv ( ) , or network protocol call is made, 
an accompanying call is made to magnet -add ( ) . This pro- 
cedure saves relevant data to a circular buffer in kernel space, 
which is then saved to disk by the user-level application pro- 
gram magnet-read. The details of each of these steps is 
discussed below. 

Kernel j User 

jlappllcatlonl 

A. MAGNeT in Kernel Space 

The MAGNeT kernel patch adds several functions to the 
Linux 2.4 kernel. The function magnetadd ( ) adds a data 
point to a circular buffer that is guaranteed to always be in 
kernel memory. This function can be called virtually any- 
where in the protocol stack; it is optimized so that each 
instrumentation call uses as few resources as possible. In 
addition, a new /proc item is added to the file space at 
/proc/net/magnet. This file may be read by any user to 
determine the current state and parameters of the MAGNeT 
kernel code. 

The MAGNeT software distribution is currently undergoing alpha testing at 
LANL. A beta prototype will soon be publicly available from ht tp : / /www. 
lanl.gov/radiant. 
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Fig. 2. Overview of MAGNeT Operation 

stiruct magnet-data { 
void "sockid; 
unsigned long long timestamp; 
unsigned int event; 
int size; 
union magnet-ext-data data; 

} ;  / *  struct magnet data * /  

Fig. 3. The MAGNeT Instrumentation Record 

A. 1 Instrumentation Record 
Fig. :3 shows the MAGNeT instrumentation record, the data 

structure that magne t -add ( ) adds to the kernel buffer at each 
instrumentation point. sockid is a unique identifier for each 
connection stream, thus giving MAGNeT a way to separate 
data traces into individual streams while protecting the privacy 
of the application and user. The times tamp field is a CPU 
cycle counter that is used to synchronize MAGNeT events. 
Valid values for the event field (e.g., MAGNET-IP-SEND) in- 
dicate the type of event a particular record refers to. s i  ze con- 
tains the number of bytes transferred during a specific event. 
The data field (a optional field selected at kernel compile 
time) is a union of various structures in which information spe- 
cific to particular protocols can be stored. This field provides a 
mechanism for MAGNeT to record protocol state information 
along with event transitions. 

A.2 Instrumented Events 
The MAGNeT kernel patch instruments the general socket- 

handling code, the TCP layer, and the IP layer. Other pro- 
tocols can be easily instrumented by adding new MAGNeT 
event codes and placing calls to magnet-add ( ) at appro- 
priate places in the protocol stack. 

There exists a possibility that the space in the fixed-sized, 
circular kernel buffer may be exhausted before the user-space 
program is able to read the records it contains. However, 
MAGNeT will not overwrite any recorded data. This is ac- 
complished by using the timestamp field of the instrumenta- 
tion record as a synchronization flag between MAGNeT user- 
and kernel- processes. Before writing to a slot in the circu- 
lar biifler, the MAGNeT kernel code checks the value of the 
times tamp field for that slot. A value other than zero indi- 
cates that the slot has not yet been copied to user space and 
that the kernel buffer is full. In this case, the kernel code in- 
crements a count of the number of instrumentation records that 



could not be written due to the buffer being full. After the user- 
level application reads a record from the buffer, it writes a zero 
to the timestamp field to signal to the kernel that the slot 
is available. Once buffer space becomes available, the kernel 
writes a special instrumentation record with an event type of 
MAGNETLOST and with the size field set to the number of 
instrumentation records dropped. 

Our experience to date indicates that while dropped instru- 
mentation records are possible, they rarely occur during the 
monitoring of actual users. (See Section 111-B.3 for details.) 

B. MAGNeT in User Space 
The user-level interface to MAGNeT consists of three ap- 

plication programs (magnet -read, magnet -parse, and 
mkmagnet), a special device file to facilitate kernel-user com- 
munication, and a collection of automating scripts. The appli- 
cation program magnet -read saves data from the kernel’s 
buffer to a disk file and magnet-parse translates the saved 
data into an understandable format. mkmagnet is a small util- 
ity program to create the files that magnet-read requires 
to operate. The scripts included with the MAGNeT distribu- 
tion allow the operation of MAGNeT to be fully automated 
and transparent to the end user. 

B.l magnet-read,mkmagnet, magnet-parse 
To minimize the potential for record loss when MAGNeT 

reads the instrumentation records from the circular buffer in 
the kernel and writes them to disk, we map the circular buffer 
from kernel space into user space via a special “shared mem- 
ory” device file. With this mapping in place, no additional ker- 
nel code is executed; the application program may simply read 
the shared memory and write it to disk. This transparency is ac- 
complished by the program magnet -read, which copies the 
records by linking the shared memory region to a pre-existing 
file via the kernel’s memory-mapped I/O system. The mkmag- 
net application creates and initializes the aforementioned file 
prior to being mapped into memory. The last tool, magnet - 
parse, reads data collected by magnet-read and dumps a 
tab-delimited ASCII table of the collected data for further pro- 
cessing. 

B.2 Automating Scripts 
Two shell scripts in the MAGNeT distribution, mag- 

net. cron and magnet, copy, provide examples of how to 
create an automated, transparent, application-monitoring envi- 
ronment on a campus network. magnet . cron is the overall 
MAGNeT management script, which should be executed upon 
initial boot, and at some interval (e.g., daily) during system op- 
eration. When run, it ensures that the proper device file exists 
and that a file has been created on disk with mkmagnet. It 
then starts magnet -read. 

C. MAGNeT Timestamps 
To ensure the greatest accuracy possible, MAGNeT uses the 

cycle counter available on contemporary microprocessors as 
the source of its timestamps. MAGNeT obtains this informa- 
tion via the kernel’s getcyclecounter ( ) function, which 
keeps the MAGNeT code hardware-independent. Given the 

Linux 2.4.3 
MAGNeT 

TABLE I 
MAGNET VS. tcpdump 

(Kb/s) (%) (%I 
94.1 f 0.0 15.2 f 0.1 33.5 f 0.1 
94.1 f 0.1 16.9 f 0.2 33.5 f 0.1 

m f i g u r a t i o n  I Throughput 1 SendCPU I ReceiveCPU I 

magne t - r ead rcv  
magne t - r eadsnd  
t cpdumplrcv 
tcpdumplsnd 1 90.8 f 0.8 20.7 f 0.3 34.4 f 1.0 

90.7 f 0.9 23.7 f 1.7 32.4 f 0.4 
89.4 f 1.5 18.0 f 0.4 59.8 f 0.9 
89.4 f 0.8 45.0 f 0.6 31.9 f 0.3 

-- 
(b) lOOOMbs (Gigabit Ethernet) 

Receive-CPU 
(%) 

82.4 f 0.2 
82.6 rt 0.3 
82.0 f 0.3 
81.1 f 0.4 
91.5 f 0.5 
64.1 f 3.3 

speed of the processor, the difference between two cycle counts 
can be converted to elapsed time. Thus, the first record created 
by MAGNeT is of type MAGNET-SY S INFO and the size field 
of this record contains the processor clock speed in kHz. 

111. MAGNET PERFORMANCE ANALYSIS 

In this section, we demonstrate MAGNeT’s ability to record 
application and network-stack events without adversely per- 
turbing the traffic stream or application behavior. We also use 
MAGNeT-collected data to show significant differences be- 
tween an application’s network demands and the actual traffic 
delivered to the network. 

A.  Experimental Method 

As an indication of how much MAGNeT perturbs 
application-generated network traffic, we measure the maxi- 
mum data rate between a sender and receiver as well as the 
CPU utilization. In addition, we measure the overhead of run- 
ning tcpdump as a point of comparison. In total, we run six 
different configurations on 100-Mbps and Gigabit Ethernet net- 
works, as shown in Table I. 

We conduct our tests between two identical dual 400MHz 
Pentium 11s with lOOMbps or lOOOMbps Ethernet card (con- 
nected via an Extreme Networks Summit 7i switch) and con- 
figure MAGNeT to record application send ( ) and recv ( ) 
socket calls as well as TCP and IP events. MAGNeT uses the 
default 256KB kernel buffer to store event records. 

To generate the workload, we run netperf [18] on the 
sender,2 transmitting data as fast as possible. We minimize the 
amount of interference in our measurements by eliminating all 
other network traffic and minimizing the number of processes 
running on the test machines to netperf and a few essential 
Linux services. 

2Thecommandused was “ n e t p e r f  -P 0 -c {loca l  CPU index} 
-C {remote CPU index} -H {hostname}” 
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B. Performance 
While no monitoring system can be completely transpar- 

ent to the workload being monitored, MAGNeT is designed 
to have minimal impact on overall network throughput. Table I 
shows how MAGNeT performs in comparison to tcpdump. 
Along with the mean, the width of the 95% confidence interval 
is given. Figures 4 and 5 present this data graphically. 

By default (and as used in our experiments), tcpdump 
stores the first 68 bytes of every packet. Our configuration of 
MAGNeT, on the other hand, stores 96 bytes for each packets3 

B.l Network Throughput 
The kernel-resident portion of MAGNeT is always execut- 

ing, regardless of whether information is being saved to disk 
or not. The first pair of bars in Fig. 4, labeled “MAGNeT,” 
shows only a small penalty when no data is being saved to disk. 
The next two pairs of bars show that MAGNeT incurs less than 
a 5% reduction in network throughput when magnet-read 
runs on either the receiver or sender. Furthermore, the penalty 
is nearly constant regardless of network speed. In contrast, 
while tcpdump incurs roughly the same penalty as MACiNeT 
over lOOMbps networks, the penalty increases to 25%-35% of 
total throughput at 1000Mbps. Thus, MAGNeT scales better 
with increasing link speeds than t cpdump. 

B.2 CPU Utilization 
Next, we compare MAGNeT’s and t cpdump’s CPU utiliza- 

tion as reported by netperf .4 Each bar in Fig. 5 reflects the 
percentage increase in CPU utilization averaged over both the 
sender and the receiver. In this case, MAGNeT also performs 
better than tcpdump, which is not surprising since tcpdump 
makes system calls from user space (thus incurring a context 
switch) for every packet while MAGNeT executes primarily 
within the kernel. What may be surprising is that both MAG- 
NeT’s and tcpdump’s overhead appears to decrease when run 

3Although MAGNeT’s record size is only 24 bytes per event, our configu- 
ration of MAGNeT instruments the events at each protocol layer in the stack, 
resulting in four events per packet (or 24 x 4 = 96 bytes per packet). 

4This version of netperf measures CPU utilization via an “idle” loop in a 
very low-priority process (which theoretically should only run when the system 
is otherwise idle). 
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on the faster network. This is due to interrupt coalescing, i.e., 
the network interface cards accumulate several incoming pack- 
ets before interrupting the CPU. Thus, the average overhead of 
servicing interrupts is greatly reduced. Had interrupt coalesc- 
ing been disabled, the average CPU utilization for both MAG- 
NeT and t cpdump would have increased. 

B.3 Event Loss 
During our testing, analysis of the MAGNeT-collected data 

revealed that MAGNeT occasionally loses events at high net- 
work utilization. For the lOOMbps trials, MAGNeT lost less 
than than 3.2% of the total events; for the lOOOMbps tests, the 
loss rate approached 15%. These losses are due to the 256KB 
circular buffer in the kernel filling before magnet -read is 
able to drain it. 

Two methods exist for reducing the loss rate: (1) increasing 
the kernel buffer size and/or (2) reducing the time magnet- 
read waits before draining the kernel buffer. Fig. 6 shows 
how changing the kernel buffer size or magnet -read delay 
affects event-loss rate on a 1OOMbps network. (Note: All other 
tests discussed in this paper used MAGNeT’s default values for 
these two parameters - 256KB kernel buffer with magne t - 
read’s automatically calculated delay time.) 

Increasing the size of the kernel buffer dramatically reduces 
MAGNeT’s potential for event loss, down to virtually no lost 
events under any network load with a 1MB buffer. However, 
because this buffer is pinned in memory, a large buffer also 
reduces the amount of physical memory available to the kernel 
and applications. We chose 256KB to be the default buffer size 
to reduce both CPU utilization and physical memory consumed 
(i.e., to reduce the invasiveness of the monitor). 

Another method for reducing event loss entails adjusting the 
amount of time magnet -read sleeps before draining the ker- 
nel buffer. However, shorter sleep times create more work (in 
terms of CPU usage, and possibly, disk write activity), and thus 
may interfere with the system’s normal use in a production en- 
vironment. 

The default sleep-time is computed as the average amount 
of time it takes to fill the kernel buffer on a lOOMbps net- 
work. This heuristic was chosen because it provides relatively 
low event-loss rates without significantly impacting the user. 



256KB 
512KB 

1024KB 

8 s e e  
4 R S $ R B P S d s ( g  

Percent of default delay time 

Fig. 6. MAGNeT’s Event-Loss Rate, lOOMbs Ethernet 

5 1 1  ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ I 
E!x$$8oxxg !i 

Percent of default delay time 
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Command-line options are provided in magnet -read to ad- 
just the delay. Fig. 7 shows the increase in average CPU uti- 
lization for different sleep times and buffer sizes with MAG- 
NeT running on the sending machine. While these differences 
appear minor, even a small decrease in available CPU cycles 
can have a dramatic effect on application run-time and com- 
munication patterns (and thus, increased CPU utilization may 
result in large perturbations of the monitored traffic). 

By comparison, t cpdump also loses information, approxi- 
mately 15% on a 100Mbps network (for the extreme load con- 
ditions of our tests). This loss rate increases rapidly with higher 
network speeds because t cpdump does no buffering. 

In summary, if MAGNeT’s loss rate is too high, it can be 
adjusted to an acceptable level via the mechanisms discussed 
above; tcpdump lacks such adjustability. For example, to 
drop MAGNeT’s loss rate to 0.5% while using the default 
256K buffer, we adjust the magnet-read delay time to 35% 
of its original value (Fig. 6). According to Fig. 7, this would 
increase the overall CPU utilization from 53% to 55%. This is 
still less than the 60% CPU utilization seen with tcpdump. 

C. Network Perturbation 
From the measurements presented in this section, MAG- 

NeT clearly performs as efficiently as t cpdump on corrtem- 

porary networks and more readily scales to higher-speed net- 
works. In addition, by adding CPU cycle-counter code around 
magriet-add ( ) and relevant areas of magnet-read, we 
are able to compute the number of cycles, on average, that 
MAGNeT consumes while recording a single event. This 
value is of interest in comparison to the minimum interarrival 
time for packets on the physical network. For instance, on a 
lOOMbps Ethernet, a 40-byte Ethernet packet - the size of an 
“empty” TCP packet - will arrive no faster than (40 bytes * 
8 bits/byte)/lOO Megabitshecond = 3.2 psec. Our conserva- 
tive tests indicate that magnet-add ( ) requires 556 cycles, 
on average, per recorded event while magnet -read requires 
425 cycles. Thus, on our 400-MHz machines, MAGNeT takes 
(556 + 426) cycles/(400000000 cycleshecond) = 2.4 psec to 
record a single event. Since this is less time than it takes a min- 
imal TCP packet to arrive or to be sent, the MAGNeT-induced 
disturbances into the traffic stream should be quite small. 

D. Design of t cpdump vs. MAGNeT 
The performance numbers in this paper reflect a difference in 

design philosophies between tcpdump and MAGNeT. tcp- 
dump i s  a purely user-level, network-inspection tool, which 
can be (and has been) relatively easily ported to a large num- 
ber of different operating systems. Thus, many of the design 
tradeoffs in t cpdump favor portability over pure performance. 
In particular, libpcap, the packet capture library created for 
tcpdump and used by other network monitors, such as Coral- 
Reef, reflects this approach. The exact method used to inter- 
cept network packets varies depending on the features avail- 
able in the root operating system, but it always involves a sys- 
tem call or other facility to cause a switch into kernel mode 
and a copy of memory from the kernel to the user-level pro- 
gram. This call-and-copy is repeated for every packet traveling 
across the interface being monitored. At high network speeds, 
the overhead of copying each individual packet between ker- 
nel and user space becomes a significant burden. MAGNeT 
benefits from having code embedded in the kernel to aggre- 
gate multiple network packets into a single space which then is 
copied in bulk, thus amortizing the cost of the copy over mul- 
tiple packets. This approach incurs less overhead but is not as 
portable as libpcap’s method. 

Iv. MAGNET IN THE REAL WORLD 
We initially developed MAGNeT to investigate differences 

between traffic generated by an application and that same traf- 
fic after modulation by the protocol stack, i.e., when the traf- 
fic hits the network. Thus far, we have observed many situa- 
tions where significant differences exist. For instance, Fig. 8 
shows a one-second trace of an FTP session that was taken 
one minute into sending a Linux 2.2.18 kernel bzipped tar file 
from our facilities in Los Alamos, NM to a location in Dallas, 
TX -- a trip of 30 hops across the Sprintlink backbone fab- 
ric. This graph shows a dramatic difference (in both packet 
size and inter-packet spacing) between application-generated 
traffic patterns and the traffic actually delivered to the network. 

Network researchers routinely test new network and pro- 
tocol designs using traces of traffic seen in current networks 
rather than the real traffic demands of applications. That 
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TABLE I1 
EFFECT OP MULTIPLE TCP-STACK TRAVERSALS 

Data Size 

3284 
1016 
919 
76 1 
723 

Trial 

Application 
1st TCP stack 
2nd TCP stack 
3rd TCP stack c 4th TCP stack 

-. 
Interpacket Spacing 

(set) 
0.124 
0.045 
0.037 
0.079 
0.122 

is, new designs are tested with network-delivered traffic, not 
application-generated traffic. Thus, differences such as those 
shown in Fig. 8 may have significant impact on the accuracy 
of such tests. For example, if the network-delivered traffic pat- 
tern from the above example is taken as the input to test the 
performance of an enhanced TCP stack (as would be the case 
if a tcpdurnp trace of the FTP session was used as input to a 
network simulation), the packet sizes and inter-packet spacing 
are once again modulated, as illustrated in Table IT (in the row 
labeled “1st TCP stack”). The remainder of the table shows 
the effect of repeatedly using TCP output streams as inputs to 
subsequent TCP stacks.’ 

V. CONCLUSION 
Current traffic libraries, network traces, and network mod- 

els are based on measurements made by tcpdump (or similar 
tools such as PingER, NLANR Network Analysis Infrastruc- 
ture, NIMI, and CoralReef). These tools do not capture an 
application’s true traffic demands; instead they capture an ap- 
plication’s demands aJtev having been modulated by the proto- 
col stack. Therefore, existing traffic libraries, network traces, 
and network models cannot provide any protocol-independent 

5Such repeated use is possible when communicating between end hosts in 
different domains. For example, when sending data via FTP between hosts 
at Los Alamos National Laboratory (LANL) and Sandia National Laboratory 
(SNL), the FTP connection is actually broken up into three consecutive con- 
nections, Le., (1) LANL end host to LANL firewall, (2) LANL firewall to SNL 
firewall, and (3) SNL firewall to SNL end host. Thus, the initial application- 
generated traffic pattern that originated at the LANL end host goes through the 
protocol stack a total of six times (three sends and three receives). 

insight into the actual traffic patterns of an application. 
MACiNeT fills the above void by providing a flexible and 

low-overhead infrastructure to monitor network traffic virtu- 
ally anywhere in the protocol stack. Using MAGNeT, we have 
shown that the traffic demands of applications are not accu- 
rately reflected by the traffic on the network wire because the 
protocol stack (i.e., TCP) adversely modulates the application- 
generated traffic before it gets to the network wire. Hence, 
while current network models may accurately reflect current 
network-wire traffic, they are not useful in providing insight 
into application-generated traffic patterns nor in optimizing ap- 
plication communications. 

The potential applications of MAGNeT include, but are not 
necessarily limited to, (1) constructing a library of traces of 
application-generated traffic, (2) verifying the correct opera- 
tion of protocol enhancements to TCP, IP (also IPv6 and IPsec), 
or other protocols, (3) troubleshooting and tuning protocol im- 
plementations, and (4) security scanning. In this paper, we fo- 
cused on the first application for MAGNeT - by providing 
a library of application-generated network traces, the network 
research community can drive their experiments (whether sim- 
ulative and live) with real, application-generated traffic. 
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